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Abstract. 

Species distribution models (SDMs) are important statistical tools for obtaining ecological 

insight into species–habitat relationships and providing advice for natural resource management. 

Many SDMs have been developed over the past decades, with a focus on space- and more 

recently, time-dependence. However, most of these studies have been on terrestrial species and 

applications to marine species have been limited. In this study, we used three large spatio-

temporal data sources (habitat maps, survey-based fish density estimates, and fishery catch data) 

and a novel space-time model to study how the distribution of fishing may affect the seasonal 

dynamics of a commercially important fish species (Pacific Dover sole, Microstomus pacificus) 

off the west coast of the USA. Dover sole showed a large scale change in seasonal and annual 
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distribution of biomass, and its distribution shifted from mid-depth zones to inshore or deeper 

waters during late summer/early fall. In many cases, the scale of fishery removal was small 

compared to these broader changes in biomass, suggesting that seasonal dynamics were 

primarily driven by movement and not by fishing. The increasing availability of appropriate data 

and space-time modeling software should facilitate extending this work to many other species, 

particularly those in marine ecosystems, and help tease apart the role of growth, natural mortality, 

recruitment, movement, and fishing on spatial patterns of species distribution in marine systems. 

Key words: fishing; habitat; marine species; Microstomus pacificus; movement; Pacific Dover 

sole; space-time model; species distribution. 

INTRODUCTION 

A central aim in conservation is to preserve important habitats for organisms to ensure species 

and population persistence in the face of anthropogenic threats (ESA 1973, Kareiva et al. 2008). 

Species distribution models have proven vital as tools for expanding our understanding of 

species habitat associations and for conservation planning and resource management (Guisan and 

Thuiller 2005, Elith and Leathwick 2009). Many methods have been developed over the past 

several decades to model the distribution of species in relation to habitat. Statistical techniques 

include generalized linear models (GLMs), generalized additive models (GAMs), quantile 

regression, artificial neural networks, regression trees, and genetic algorithms (see reviews by 

Guisan and Thuiller 2005, Elith and Leathwick 2009). To date, however, many of these models 

have failed to consider space and time dependence (Dormann 2007, Hoeting 2009). Explicitly 

accounting for space-time dependence is crucial for understanding current and future threats 

from anthropogenic forces and for reducing the risks of erroneous results as many exogenous 

(e.g., climate, habitat) and endogenous (e.g., dispersal, predation) drivers of species distributions 

are likely to vary through time and space (Legendre 1993, Hoeting 2009, Cressie and Wikle 

2011). 

Despite the importance of spatial and temporal processes in biology, the use of space-time 

models has remained limited due to their presumed complexity and computational burden. The 

number of numerical operations increases quickly as the dimensionality of models in space and 

time increases, rendering computation slow and sometimes infeasible for large datasets. 

Nonetheless, space-time modeling has become more feasible and accessible through the 

availability of several statistical software packages in the last decade, owing to the increasing 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

This article is protected by copyright. All rights reserved 

computational power and advances in numerical techniques (e.g., R, WinBUGS, Matlab, SAS). 

Furthermore, sophisticated methods have been developed to deal with spatio/temporal 

dependence including sparse matrix operations (e.g., covariance tapering; Furrer et al. 2006), 

predictive process models (Banerjee et al. 2008, Latimer et al. 2009, Finley et al. 2009), 

numerical approximation to the likelihood (e.g., spectral methods; Fuentes 2007), or the use of 

Markov random fields (Rue and Martino 2007). Several biological, environmental, and natural 

resource studies have used these techniques to model the distribution of disease (Schrödle and 

Held 2011), weather (Finley et al. 2012), heritability (Holand et al. 2013), animals and plants 

(Latimer et al. 2009, Thorson et al. 2015, Ward et al. 2015), at a variety of geographical and 

temporal scales. 

In marine ecosystems, many factors could potentially affect the distribution of fish over time and 

space (Whittaker et al. 1973). Fish may have a specific habitat preference that can vary with life 

stage. The mobility of a species can also vary with ontogeny and scale (sedentary vs. mobile 

species; diurnal, ontogenetic, or seasonal movement), and they interact with their prey and 

predators. Humans are one of the central predators in marine ecosystems and can alter fish 

communities substantially (Worm et al. 2009). Moreover, fishing does not occur randomly in 

space and time as fishers choose the location and timing of fishing based on their knowledge and 

the rules that regulate fisheries (Holland and Sutinen 2000, Branch et al. 2006, van Putten et al. 

2012). As a consequence, marine species distributions can potentially change over relatively 

short periods of time, with the change in distribution reflecting the joint effect of fishing activity, 

environment, and species life history.  

In this study, we introduce a modelling framework that allows us to tease apart the effect of 

fishing from other factors, such as movement, recruitment, natural mortality, or growth, based on 

the analysis of how species and fishery catches are distributed in space and time. To do so, we 

make use of the three large-scale spatio-temporal data sources and the unique design of the 

research survey (parallel surveys conducted three months apart in the summer and fall) to 

examine how population changed between these two time periods and whether changes were 

related to fishing activities. The three spatio-temporal data sources are detailed benthic habitat 

data from the continental shelf and slope off the west coast of the USA, fish density estimates 

from an extensive fishery-independent research survey, and commercial fishing catch data. We 

focus our analysis on the dynamics of Pacific Dover sole (Microstomus pacificus), an abundant 
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and commercially important species as a case study, to illustrate the applicability of our 

methodology to study the seasonal dynamics of any marine species. Our approach is broad and 

may be applied to virtually any species targeted by commercial or recreational hunters or fishers 

where appropriate data are available.  

MATERIAL AND METHODS 

Motivational case study: Dover sole population of the U.S. west coast 

Dover sole is a commercially important flatfish species off the U.S. west coast (Fig. 1) that has 

been exploited since the early 20th century (Hicks and Wetzel 2011). The annual catch over the 

last fifty years averages 14௘000 tons (~2% exploitation rate), and in 2012, the landed value of the 

catch was estimated at over US$6.5 million. The species is long-lived (maximum age ~60 yr) 

and widely distributed from Alaska to southern California. It is commonly found on 

sandy/muddy ocean bottoms, in waters ranging from 37 to 1500 m. Individual Dover sole tend to 

migrate to deeper waters in winter (between November and March), during the spawning season 

(Hagerman 1952) and as they mature and age (Jacobson et al 2001).  

NOAA’s Northwest Fisheries Science Center (NWFSC) conducts fishery-independent surveys 

using bottom trawl gear to assess the spatio-temporal distribution of Dover sole and other co-

occurring species (Bradburn et al. 2011). In this study, we use data from 2004 to 2011. The 

survey involves two passes each year: the first pass occurs between mid-May and August, while 

the second pass lasts from August to October. Approximately 700 hauls are conducted each year. 

A standard trawl net is towed through the water for 15 min, and the number and biomass of all 

fish present are recorded along with the spatial location, average depth, and bottom temperature. 

We used the midpoint between the start and end of each haul as the location of the catches. We 

complemented this data using additional habitat information, i.e., sediment grain size and 

distance to nearest rock outcrops derived from NMFS (2013). Detailed descriptions of the 

sampling design, gear, and protocols used for this survey are found in Keller et al. (2012).  

In addition to the spatially referenced survey data, we also used nearly 200௘000 spatially 

referenced commercial Dover sole catch records by fishing vessels. It is mandatory for fishers to 

report all trawl events, however, logbook data are often incomplete, with only 90% of the 

reported Dover sole catch recorded. We therefore assumed that the missing catches in the 

logbook data were missing-at-random, and they were imputed randomly based on multinomial 

distribution with the expected catch probabilities obtained from the logbook data on a 2 × 2 km 
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grid. This created a map of catch distribution for each grid and each area. Catch data at the tow 

level were evenly distributed to each grid based on the portion of commercial vessel tracks 

intersecting each of the 2 × 2 km grids.  

General approach 

The first objective of this study is to examine how Dover sole distribution changed from summer 

to fall, or fall to summer in each year between 2004 and 2011. A second objective is to identify 

potential causal mechanisms for any changes (fishing or other biological mechanisms, such as 

ontogenetic movement, natural mortality, recruitment, and growth). In other words, we ask 

whether the fall research vessel survey (or late spring survey) shows any changes in biomass 

compared to the late spring survey (or fall survey) and if any such changes can be attributed to 

fishery removals and/or to other factors such as growth, movement, natural mortality, and 

recruitment.  

Our statistical approach involves several steps, summarized briefly here. First, we fit a statistical 

model to the survey data to determine the spatial distribution of Dover sole by year and survey 

pass. Second, we used those space-time models to predict the biomass of Dover sole along the 

coast for each pass and year. Third, we calculated the net change in biomass between the survey 

passes after taking the catch into account. Finally, we examined any residual patterns of variation 

in the net change in biomass and determined if the pattern could be explained by any 

environmental and/or biological factors.  

Estimating population biomass at each survey pass 

Description of the space-time regression model.— We fitted a space-time generalized linear 

model (GLM) to the survey data (nobs = 5193) to create a predictive map of population biomass 

along the U.S. west coast for each survey pass and year. We modeled the species distribution in 

two stages: first, a space-time model was fit to explain the variation in Dover sole 

presence/absence; then a second model for the positive data was fit to explain changes in Dover 

sole density given that a least one fish was observed (see also Shelton et al. 2104 and Ward et al. 

2015). We used this modeling framework because survey data comprised a large portion of zeros 

(17% of the data) and we expected different variables to be important to for the presence/absence 

and positive stages of the model. These two pieces were assumed to be conditionally 

independent, and the general framework is often referred as a delta or hurdle model in ecology 

(Zuur et al. 2009). We constructed our model in a Bayesian framework (see Table 1 for prior 
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specification). Separate models were created for each survey pass as the objective of the study 

was to determine changes in population distribution between the two survey passes each year. 

Occurrence of Dover sole at a set of locations S, year t and survey pass p,         was modeled 

using a binomial GLM with logit link                                   
where Xp,t(S) is a matrix of covariates at locations S, year t, and pass p, bp is the vector of 

regression coefficients (shared across years for each pass p for continuous variables; we assumed 

that fish preference for these habitat variables does not change between years for each pass p 

during this short study period), and wp,t is the spatial field for year t and pass p. The covariates 

used in this study are log(depth), (log(depth))2, temperature, temperature2, sediment size, 

sediment size2, distance to rock, and fixed year effect (more details on the choice of covariates 

are given later and in Appendix A). We also assumed that the spatial field is independent and 

different between years. In this sense, our model is not a typical spatio-temporal model as 

implied by the spatio-temporal statistical literature (e.g., Cressie and Wikle 2011).  

To model the non-zero Dover sole density (kg/km2; over all size and age classes) at a set of 

locations S, year t, and survey pass p,        , we assumed that the log of Dover sole density was 

normally distributed.                                           
where Zp,t(S) is a matrix of covariates at locations S, year t, and pass p, (similar to Xp,t(S)), ap is 

the vector of regression coefficients, δp,t is the spatial field for year t and pass p (we assumed 

again that the spatial field is independent between years), and Ep(S) represents the swept areas of 

the tows (and modeled as an offset variable). 

The estimation of spatial field involves choosing (1) the correlation structure between 

neighboring cells and (2) how the spatial field changed over time. In this study, we modeled the 

spatial field wp,t (and δp,t) as a smooth spatial surface, wp,t~MVN(0, p,t=p
2Cp,t(h)) where p

2 is 

the spatial variance and Cp,t(h) is the isotropic spatial correlation function defined by the Matérn 

function with  = 0.5 (Lindgren et al. 2011; similar to the exponential function in this case). We 

assumed that the spatial field was independent between years. In this way, we account for the 

possibility for inter-annual changes in species distribution with a distinct clustering pattern for 

each year (as in Shelton et al. 2014).  
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      
                                  

 
 

Model fitting was performed using the R package INLA (Blangiardo et al. 2013) and readers are 

referred to Rue et al. (2009), Lindgren et al. (2011), and Cameletti et al. (2013) for details about 

the underlying theory and computational approaches for space-time models using INLA (see the 

Supplement for R codes).  

Explanatory variables.—We used existing geospatial data layers from the Essential Fish Habitat 

(EFH) Phase 1 report (NMFS 2013), which included depth, sediment grain size, bottom 

temperature, and distance to nearest rocky habitat (at least 1 ha in area; see Appendix A for 

details on habitat covariates). These variables are important habitat characteristics that can 

potentially affect the distribution of marine fish (Allen et al. 2006). Distance to rock was 

calculated using ArcGIS software to calculate the distance from each of the trawl survey sites to 

the nearest rock habitat patch (see NMFS 2013). We only used rocky patches greater than 1 ha in 

area. 

Model selection.—Model selection was conducted to decide which of the explanatory variables 

to include in the models. The explanatory variables available for this study were log(depth), 

(log(depth))2, distance to nearest rocky habitat, sediment grain size, (sediment grain size)2, 

temperature, and (temperature)2. Model selection was based on the deviance information criteria 

(DIC; Spiegelhalter et al. 2002) and the mean logarithmic score (Gneiting and Raftery 2007, 

Krnjajić et al. 2008); two metrics that are readily available from the INLA model output. In 

either case, the lower the metric, the more preferred the model. The DIC was directly obtained 

from the model output while the logarithmic score (LS) was calculated as the negative log of the 

conditional predictive ordinate (CPO). The CPO corresponds to the position of the observed 

value yi within the leave-one-out cross-validatory posterior predictive distribution evaluated at 

the observed value yi. A paired permutation test based on the observation-level score provided a 

convenient approach to test if one model’s mean logarithmic score was significantly different 

than another one. 

 
  1 logobsn

i i

obs

CPO
LS

n
   

where nobs corresponds to the number of data points (nobs= 5193). 
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Moving up from density to estimate of population biomass along the coast.—We computed the 

posterior predictive distribution for Dover sole density at each pass and year once the best 

models for each pass was chosen (one for the presence/absence and one for the positive catch 

data; see Appendix A for details about the projection grid). We generated the unconditional 

posterior predictive distribution for fish density, Ip(S,t), for each 2 × 2 km grid along the coast 

(i.e., beyond the sampled locations, for a total of 38௘047 grid cells) by calculating the product of 

the two models’ prediction: the probability of fish presence at each grid and the probability 

distribution of fish density assuming that fish were present. The distribution reflected the 

biomass susceptible to the trawl gear, not the entire population, because the bottom trawl does 

not catch fish of different sizes equally (i.e., selectivity varied with length), and fish population 

size structure was unknown. We therefore needed to re-scale the whole distribution to match the 

scale of the exploitable population size (age 5+) estimated in the latest Dover sole assessment 

(Hicks and Wetzel 2011). To do so, the scaling coefficients q1 and q2 (also called catchability 

coefficient in the fisheries literature; Maunder and Punt 2004) were calculated as the average 

ratio (between 2004 and 2011) between the total mean predicted population density from passes 

1 and 2 in year t, ( , )pI S t , and the exploitable population size in year t estimated in the actual 

assessment, Biomasst
assesssment.  

12011
1

1
2004

1
0 25

8

( , )
.

N

p

S
assessment

t t

I S t
q

Biomass






       

   

22011
1

2
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8
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.
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

       
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Finally, Dover sole biomass at location S, Bp(S,t), for each pass p and year t, was determined by 

dividing the density index by the scaling coefficients. 

1
1

1

( , )
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p

I S t
B S t

q
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2
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I S t
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q
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Calculating the net change in biomass (NCB) between the two survey passes 

There is a gap of roughly two and a half months between the starting dates of the two survey 

passes within a year. During that time, biomass at a given location can change due to fishing, 

growth, natural mortality, recruitment, and movement. By calculating the change in biomass 

between the two passes after taking into account the fishery removals, we can measure the 

cumulative effect of growth, natural mortality, recruitment, and movement over time and space. 

We refer to this quantity as the net change in biomass (NCB). NCB can be calculated for two 

time periods: (1) between pass 1 and pass 2 of the same year, NCB1(S,t), or (2) between pass 2 of 

year t and pass 1 of year t+1, NCB2(S,t). In other words, NCB1(S,t) measures the change from 

summer to fall of the same year, and NCB2(S,t) measures the change from fall to summer of the 

next year.  

1 2 1 1

2 1 2 2

NCB ( , ) ( , ) ( , ) ( , )

NCB ( , ) ( , 1) ( , ) ( , )
p p

p p

S t B S t B S t Catch S t

S t B S t B S t Catch S t
 
 

  
     

where Catch1 and Catch2 are the total fishery removals from grids S between pass 1 and 2 of the 

same year or pass 2 of year t and pass 1 of year t +  1, respectively. In practice, the distributions 

of NCB1 and NCB2 are determined based on MCMC samples (1000) from the biomass 

distributions at pass 1 and 2, and a Monte Carlo sample (1000) from the catch distribution (as 

these parameters were calculated independently in this study). This Monte Carlo approach 

appropriately propagates uncertainty in both the biomass and catch throughout the analyses. 

There are at least three possible hypotheses for our analyses of net change in biomass. If both 

NCB1 and NCB2 are close to zero, this suggests that fishery removals are the main factor 

explaining the changes in biomass between the two passes and there is not a substantive 

contribution of growth or movement. If NCB1 and NCB2 differ from zero and show opposite 

patterns when plotted against a covariate, we can speculate that seasonal movement is the main 

factor affecting the changes in biomass (e.g., fish moving nearshore to feed then moving to 

deeper waters to reproduce). If growth, natural mortality, or recruitment is the main factor 

driving the spatial patterns, we would expect NCB1 and NCB2 be different from zero but NCB2 

would not mirror the changes NCB1 as fall patterns of growth, natural mortality, and recruitment 

are not expected to be related to the summer pattern.  

Detecting pattern of variation in the net change in biomass along the coast 
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In order to analyze the pattern of variation in net change in biomass along the coast, we need to 

extract the marginal effect of each covariate on NCB1 and NCB2. This is not straightforward for 

several reasons. First, the net change in biomass is affected by fishery removal which reflects 

fishermen behavior. NCB1 and NCB2 are therefore affected by complex interaction between 

variables (fishermen might choose to fish in specific depth range at a specific time). A second 

difficulty is that the net change in biomass in each grid and time is not known but rather has a 

distribution that reflects its uncertainty. To deal with these issues, we couple the use of a random 

forest algorithm (RF; see Breiman 2001 or Cutler et al. 2007 for detailed explanation of RF), to 

extract the marginal effect of different variables on the net change in biomass, with the Monte 

Carlo (MC) sampling methodology, to account for uncertainty in net change in biomass. RF is a 

powerful machine learning algorithm that can handle complex interaction between variables and 

provides user friendly graphical visualization of the marginal effect of independent variables to 

the dependent variable through partial dependence plots. In short, RF works as follow: (1) create 

many bootstrap data (ntree) from the original data; (2) fit a regression tree (in this study) to each 

bootstrap data by only using a random subset of predictors at each node (mtry); (3) predict new 

data by averaging the prediction from all ntree regression trees. We implemented RF using the 

package “randomForest” in R (Liaw and Wiener 2002). To account for the distribution 

uncertainty in NCB1 and NCB2, we ran the RF analysis 100 times (the results did not 

qualitatively change after 50) with different Monte Carlo samples of NCB1 and NCB2 for each 

year. For each RF analysis, we included depth, Northing (i.e., northward-measure of distance, 

similar to latitude), distance to closest rock outcrops, sediment size, and a random variable 

varying from [0, 1] as explanatory variables to examine if/how the latter affected the changes in 

net change in biomass. We incorporated the random variable to examine the importance of the 

other covariates. Again, if the marginal effect plots show an opposite pattern between NCB1 and 

NCB2, movement is suggested as the main reason behind these seasonal changes in biomass. If 

catch is the main factor affecting the changes in biomass between the two passes, we would 

expect the net change in biomass be close to zero.  

RESULTS 

The best models (Table 2) fit the data well and explained a higher portion of variability in catch 

rates than conventional design-based estimator as seen in Thorson et al. (2015; see Appendix B 

for the posterior distributions of model parameters). 
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How does Dover sole biomass change between survey passes and among years? 

Our analyses showed clusters of high biomass along the coast and high variability in Dover sole 

distribution among years and survey passes (Fig. 2). Dover sole was generally abundant in the 

200–800 m depth zone (Fig. 3) but seemed to have shifted toward deeper area between pass 1 

and 2 (Fig. 3). A cluster of high Dover sole biomass was present for few years northwest and 

southwest of San Francisco (especially for pass 1) and between Cape Blanco and Astoria (Fig. 2).  

Does biomass change in response to fishing? 

In general, we found little evidence for fishing impacts on changes in biomass (Fig. 4). While 

most of the catches were recorded below 5 tons in each grid (totaled across grids catches 

averaged 8500 tons annually over the last eight years), the scale of biomass change between the 

survey passes was much higher, and varied frequently from −200 to 200 tons (Fig. 4).  

How does the net change in biomass vary spatially and temporally? Are there consistent patterns 

of net change in biomass among years? 

We detected spatial areas where population biomass changed dramatically between seasons with 

both areas of large positive or negative NCB (Fig. 5; dark green and dark red areas, respectively). 

However, the magnitude and location of these areas with large NCB varied across years. For 

example, areas with negative NCB1 (red color; indicative of reduced Dover sole biomass in the 

fall relative to the summer) were concentrated between San Francisco and Eureka in 2006 and 

2007, but move northward in 2009 to between Eureka and Astoria (Fig. 5). Similarly, the 

distribution of NCB2 varied among years, with a pattern that was generally opposite of NCB1.  

Despite the year to year variation in NCB1 and NCB2, some areas along the coast showed 

consistent negative or positive net change in biomass between the survey passes (Figs. 5 and 6b, 

c). For example, one region northwest of Eureka, one northwest of San Francisco, and one 

southwest of San Francisco showed a consistently negative NCB1 (across year median; Fig. 6b, 

c). In contrast, median NCB1 was positive southwest of Cape Flattery, west of Astoria, and 

northwest of Point Conception. NCB2 showed a strong negative correlation with NCB1 (Fig. 6d), 

with positive areas northwest of Eureka, northwest and southwest of San Francisco, negative 

southwest of Cape Flattery, and west of Astoria. 

How does the net change in biomass change with respect to environmental covariates? 

Northing (latitude) affected NCB1 and NCB2 in a complex manner (Figs. 7d and 8d). Northmost 

(above 1500 km north, i.e., along the Washington coast) and southmost regions (below 200 km 
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north, i.e., south of Point Conception) had a higher average NCB1 across years than the rest of 

the coast (Fig. 7d). 2004 and 2005 was notable with an overall net change in biomass much 

higher than the rest of the years. Similarly, average NCB1 dropped below zero around 700 km 

and 1100 km north with some year to year variability. All these locations corresponded to the 

regions previously identified with consistent positive or negative NCB1 across years (Fig. 6b). 

The average NCB2 showed almost exactly the opposite pattern than the average NCB1 with 

negative estimates in northmost and southmost areas for example (Fig. 8d). 

Similarly to the effect of Northing on NCB1, there was a large year to year fluctuation in the 

effect of depth to the NCB1 (Fig. 7e). On average, shallow (<100 m) and deeper (>700 m) areas 

had a higher NCB1 estimates than intermediate-depth areas (100, 700 m). However, the depth 

range with positive or negative NCB1 varied depending on the year. As an example, NCB1 was 

positive from (0–700 m) in 2004 while it was negative in 2007. Here again, the pattern in NCB2 

was almost the opposite of that of NCB1 (Fig. 8e).  

Finally, NCB1 was on average decreasing for increasing distance to rock (Fig. 7f) and sediment 

size did not affect strongly the value of NCB1 (Fig. 7g). But again, NCB2 varied in the opposite 

manner compared to NCB1 (Fig. 8f, g). 

DISCUSSION 

Pattern in Dover sole biomass change along the U.S. west coast: potential causes and 

consequences 

Despite its economic importance, exploitation rates for Dover sole have been quite low in recent 

years (Hicks and Wetzel 2011). As a consequence, most of the observed changes in biomass in 

space and time for Dover sole were likely due to factors other than fishing. Our results are 

consistent with movement as the primary driver of Dover sole seasonal dynamics: NCB1 values 

were negatively correlated with NCB2 values across years and space (Fig. 6) and RF partial 

dependence plots showed that net change in biomass was changing in the opposite direction with 

respect to environmental covariates between NCB1 and NCB2 (Figs. 7 and 8). We detected three 

factors potentially influencing the movement of Dover sole: depth, latitude, and the presence of 

rock outcrops.  

Between summer and fall, Dover sole biomass decreased on average at intermediate depth (100, 

700 m) to increase in shallow (<100 m) and deeper waters (>700 m; Fig. 7e). There are at least 

two possible explanations for these observations. First, Toole et al. (2011) noted that juvenile 
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Dover sole (10–22 cm) tended to move inshore (depth <150 m) during summer. Summer coastal 

upwelling brings nutrient-rich water from the deep to the shallow waters off the west coast of the 

USA, increasing its primary productivity and creating favorable conditions for juvenile Dover 

sole (Landry et al. 1989). The positive change in biomass observed in shallow waters in late 

summer/early fall might therefore reflect movement of juvenile Dover sole into these nursery 

grounds. As for the flux of biomass in deeper water, this could be related to the ontogenetic 

movement of Dover sole as they grow and mature (Jacobson et al. 2001). While we hypothesized 

that seasonal movement might be responsible for these patterns in population change, we cannot 

exclude the possibility of differential growth, natural mortality, or recruitment. However, such 

massive and temporally consistent spatial variation in growth, natural mortality, or recruitment is 

an unlikely explanation as it would require temporally consistent and successive events of fish 

recruitment (or growth) followed by natural death (and vice versa) at the exact same location.  

Dover sole biomass also changed in a complex manner between summer and fall as a function of 

latitude (Figs. 7d and 8d). NCB1 indicated that Dover sole congregated in the late summer along 

the Washington coast (>1500 km north) and south of Point Conception, and left regions such as 

northwest and southwest of San Francisco and northwest of Eureka (Fig. 6b). Although the 

origin of these fish could not be determined using the current methodology, a parsimonious 

explanation is that fish moved from nearby areas (as suggested by comparing NCB1 and NCB2). 

Finally, Dover sole net change in biomass was estimated to be decreasing with distance to rock 

during summer (Fig. 7f). This is a surprising result, given previous studies that have suggested 

that Dover sole generally prefer sandy/muddy bottom. However, some flatfish species such as 

Petrale sole could be found in high concentration in sandy bottom close to rocky habitats (A. 

Hicks, personal communication).  

The importance of spatial and temporal dependency in species distribution modeling 

Space-time models are increasingly important in ecology (Dormann et al. 2007, Beale et al. 2010, 

Saas and Gosselin 2014). However, many ecological studies still ignore spatial and/or temporal 

dependence (Dormann 2007). This is the case in marine systems where spatio-temporal data are 

commonly used to generate indices of total biomass but the spatial or space-time correlation 

structure of observations is generally ignored (Maunder and Punt 2004, Thorson and Ward 2013, 

Thorson et al. 2015). In this study, we have shown that space-time modeling is a versatile 

method that could easily be applied to answer practical problems such as (1) examining the 
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change in the spatial distribution of a species within or between years, (2) looking at the impact 

of exploitation to the local population structure, (3) detecting patterns of population change and 

its relation to biological phenomena. As more georeferenced survey data become available to the 

public (e.g., http://oceanadapt.rutgers.edu/), we expect these approaches to be more widely used. 

Moreover, space-time models are important for the analysis of spatial data to reduce the risk of 

producing unreliable or inaccurate parameter estimates (Dormann 2007, Beale et al. 2010, Saas 

and Gosselin 2014). While data are becoming easier and cheaper to acquire, we rarely have data 

on all influential environmental variables. The inclusion of spatial (or temporal) autocorrelation 

in the model provides a flexible way to account for factors not explicitly included in the model 

(Dormann 2007, Beale et al. 2010, Saas and Gosselin 2014, Shelton et al. 2014).  

CONCLUSION AND FUTURE WORK 

The use of habitat variables in species distribution modeling and biomass estimation has a long 

history in terrestrial ecosystems, but basic habitat information has been lacking in marine 

ecosystems until the past decades or so. While these data have been used to inform the location 

of marine reserves (Ward and Vanderklift 1999, Sunblad et al. 2011) or for the identification of 

vulnerable and critical habitat (Krigsman et al. 2012), they have rarely been integrated into 

models of fish distribution (Robinson et al. 2011, Shelton et al. 2014, Ward et al. 2015). In this 

study, we took advantage of newly available spatio-temporal data on fish density and habitat and 

incorporated it into a space-time model to identify potential causal mechanisms (fishing or other 

biological mechanisms such as ontogenetic movement, recruitment, natural mortality, and 

growth) explaining the seasonal dynamics of Dover sole across the U.S. west coast. Dover sole 

dynamics appeared to be mainly described by seasonal movement along the coast and not by 

fishing. The species moved to shallow and deeper water between early summer and early fall 

following their ontogeny. They also appeared to move northmost and southmost in late summer 

and aggregate along the Washington coast and south of Point Conception, while leaving regions 

such as northwest and southwest of San Francisco and northwest of Eureka. Furthermore, our 

results seemed to be quite robust to the assumptions made in this study. A sensitivity test on the 

choice of q value (the catchability coefficient), and the choice of covariates (see Appendix C) 

showed that the main results did not change qualitatively; the same regions along the coast 

showed the consistent loss or gain in population and the three habitat covariates (depth, Northing, 

and distance to nearest rock outcrops) affected the net change in biomass in a similar pattern.  
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In summary, spatially referenced catch and survey data indicated considerable year to year and 

season to season variability in the spatial distribution of Dover sole. These changes were mostly 

attributed to movement but growth, natural mortality, and recruitment could be factors that can 

also shape the population. Our methodology can be easily extended to other marine species to 

help tease apart the role of fishing, growth, natural mortality, recruitment, and movement on 

spatial patterns in production (i.e., NCB). This is all the more important as more data (e.g., 

http://oceanadapt.rutgers.edu/) and space-time modeling software become available to the 

general public. Among the list of species candidates, it would be interesting to expand the study 

to species with stronger fishing pressure to contrast with species such as Dover sole which has a 

low exploitation rate.  
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Table 1. Parameter definition and prior specifications in INLA. 
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Fixed effects  N(0, 1000) 

Precision for the measurement 

error 
1/σp

2 Gamma(1;5e–05) 

Spatial precision  p
2 Gamma(1;5e–05) 

Spatial range 2/ Gamma(1;5e–05) 

Table 2. Covariates selection results for the spatio-temporal generalized linear models (GLMs).  

Model  Variables Delta DIC Mean(LS) P value 

1+ D+D2+T+T2+S+S2+R 0.00 1.683 ref 

 D+D2+T+T2+S+R 3.83 1.683 0.986 

 D+D2+T+T2+S 0.69 1.683 0.998 

 D+D2+T+T2+R 3.14 1.683 0.982 

 D+D2+T+S+S2+R 8.97 1.693 0.784 

 D+D2+T+S+S2 4.86 1.693 0.795 

 D+D2+T+S+R 12.70 1.694 0.761 

 D+D2+T+R 9.96 1.694 0.767 

 D+D2+T+S 9.59 1.693 0.776 

 D+D2+T 9.54 1.694 0.778 

 D+D2+T+T2 3.06 1.683 0.987 

 D+D2+R+S+S2 25.10 1.696 0.722 

 D+D2+R+S 29.26 1.696 0.709 

 D+D2+R 26.36 1.696 0.727 

 D+D2+S+S2 23.08 1.696 0.730 

 D+D2+S 28.19 1.696 0.728 

 D+D2 28.72 1.696 0.731 

2+ D+D2+T+T2+S+S2+R 23.69 1.695 0.952 

 D+D2+T+T2+S+R 26.99 1.694 0.968 

 D+D2+T+T2+S 24.72 1.692 ref 

 D+D2+T+T2+R 24.66 1.694 0.975 

 D+D2+T+S+S2+R 82.87 1.711 0.619 

 D+D2+T+S+S2 86.91 1.712 0.610 

 D+D2+T+S+R 92.49 1.713 0.578 
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 D+D2+T+R 91.54 1.713 0.586 

 D+D2+T+S 98.16 1.714 0.581 

 D+D2+T 96.40 1.713 0.876 

 D+D2+T+T2 38.14 1.695 0.951 

 D+D2+R+S+S2 0.00 1.697 0.908 

 D+D2+R+S 7.45 1.698 0.891 

 D+D2+R 7.85 1.697 0.905 

 D+D2+S+S2 4.62 1.697 0.899 

 D+D2+S 13.23 1.698 0.870 

 D+D2 11.36 1.698 0.892 

1− D+D2+T+T2+S+S2+R 8.25 0.279 0.915 

 D+D2+T+T2+S+R 16.24 0.280 0.869 

 D+D2+T+T2+S 24.60 0.282 0.828 

 D+D2+T+T2+R 13.90 0.280 0.885 

 D+D2+T+S+S2+R 8.58 0.278 0.931 

 D+D2+T+S+S2 16.16 0.280 0.879 

 D+D2+T+S+R 13.92 0.279 0.896 

 D+D2+T+R 11.53 0.279 0.916 

 D+D2+T+S 22.16 0.281 0.844 

 D+D2+T 22.65 0.281 0.843 

 D+D2+T+T2 24.58 0.282 0.820 

 D+D2+R+S+S2 0.00 0.276 ref 

 D+D2+R+S 5.00 0.277 0.974 

 D+D2+R 1.39 0.276 0.998 

 D+D2+S+S2 9.96 0.278 0.937 

 D+D2+S 15.67 0.279 0.901 

 D+D2 16.33 0.279 0.898 

2− D+D2+T+T2+S+S2+R 0.00 0.277 ref 

 D+D2+T+T2+S+R 3.46 0.278 0.986 

 D+D2+T+T2+S 4.09 0.278 0.983 

 D+D2+T+T2+R 3.32 0.278 0.989 
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 D+D2+T+S+S2+R 13.18 0.280 0.917 

 D+D2+T+S+S2 13.48 0.280 0.907 

 D+D2+T+S+R 16.84 0.280 0.900 

 D+D2+T+R 16.21 0.280 0.902 

 D+D2+T+S 16.83 0.280 0.896 

 D+D2+T 16.35 0.280 0.908 

 D+D2+T+T2 3.45 0.278 0.987 

 D+D2+R+S+S2 16.78 0.280 0.910 

 D+D2+R+S 19.8 0.281 0.888 

 D+D2+R 17.29 0.280 0.902 

 D+D2+S+S2 16.86 0.280 0.899 

 D+D2+S 19.49 0.281 0.891 

 D+D2 17.41 0.279 0.905 

Notes: Model selection was performed for the Dover sole presence/absence at survey pass 1 (1−) 

and survey pass 2 (2−); and for Dover sole density at each survey pass (1+ and 2+). Deviance 

information criterion (DIC) and the mean logarithmic score are used jointly to determine the best 

model (highlighted in bold). In case of conflicting result between DIC and the mean logarithmic 

score, the best model was chosen based on DIC as the difference in mean logscore was rarely 

significantly different (the P values). Abbreviations are D (log of depth), T (temperature), S 

(sediment size), and R (distance to closest rocks). D2 and T2 are for squared covariate effect  

FIG. 1. Map of the U.S. west coast along with the survey sites from 2004 to 2011.  

FIG. 2. Panels (a–h) are biomass maps of Dover sole along the U.S. west coast between 2004 and 

2011. For each year, the posterior mean estimate of biomass at the first survey pass (1) and at the 

second survey pass (2) are put side by side.  

FIG. 3. Marginal posterior effects of haul depth, distance to rock, and sediment size on the Dover 

sole biomass for pass 1 and pass2. To show the marginal effects, all covariates not of interest are 

held at the mean. The relationship is shown across the entire observed scale, and the rug plot (i.e., 

ticks at the bottom of each plot) indicates the distribution of data; t is year. 

FIG. 4. Panels (a–i) show the difference in average biomass between the second survey pass and 

the first survey pass plotted against catch for each fished grid along the U.S. west coast and year. 
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The darker the shading or the lines, the more data points are concentrated in the area. The lines 

corresponds to the kernel density estimates 

FIG. 5. Panels (a–h) show 2004–2011 median estimate of net change in biomass between pass 1 

and pass 2 within the same year (NCB1), and between pass 2 of year t i and pass 1 of year t +  1 

(NCB2), for each 2 × 2 km spatial grid along the U.S. west coast.   

FIG. 6. Panel (a) shows annual survey locations between 2004 and 2011. Panel (b) shows the 

median across the 2004–2011 median estimate of net change in biomass between pass 1 and pass 

2 within the same year (NCB1), for each 2 × 2 km spatial grid along the U.S. west coast. Panel 

(c) shows the median across the 2004–2010 median estimate of net change in biomass between 

pass 2 of year t and pass 1 of year t +  1 (NCB2), for each 2 × 2 km spatial grid along the U.S. 

west coast. Panels (d) is a plot of median NCB1 vs. median NCB2. 

FIG. 7. Panel (a) shows depth distribution along the west coast, (b) is distance to nearest rock 

outcrops along the west coast, (c) is variable importance plot for the predictor variables from the 

random forest (RF) used for predicting the net change in biomass (NCB1) between pass 2 and 

pass 1 within the same year. Panels (d–g) are partial dependence plots for RF for NCB1 and four 

predictor variables. Partial dependence is the dependence of NCB1 on one predictor variable after 

averaging out the effects of the other predictor variables in the model. RF is run on 100 Monte 

Carlo samples of NCB1 by year to account for the distribution uncertainty in NCB1. Results for 

each year are color coded in gray intensity.  

FIG. 8. Panel (a) shows depth distribution along the west coast, (b) is distance to nearest rock 

outcrops along the west coast, (c) is variable importance plot for the predictor variables from the 

random forest (RF) used for predicting the net change in biomass between pass 1 and pass 2 of 

different years (NCB2). Panels (d–g) are partial dependence plots for RF for NCB2 and four 

predictor variables. RF is run on 100 Monte Carlo samples of NCB2 by year to account for the 

distribution uncertainty in NCB2. Results for each year are color coded in gray intensity. 
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Figure 2: 4 
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Figure 3: 8 
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Figure 4:10 
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Figure 5  12 
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